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Abstract

The paper describes the results of a numerical parametric study aimed ot studying the strue-
tural response of closely packed horseshoe-shaped sewer linings. The effect of various restraint
conditions which simulate different lemporary support systems that may be used by the con-
tractors during installation of the lining, and of different loading configurations which may
arise at different stages of grouting the annulus gap between the lining and the sewer, have
been thoroughly investigated. Covering the feasible range of geometric, material and loading
parameters, comprehensive design curves — based on the allowable stress-limit, deflection-
limit and {approximate) buckling criteria are presented. @ 1999 Elsevier Science Lid. All
rights reserved.
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dimensionless constants for maximum bending stress
(flotation)

dimensionless constants for maximum deflection (Aotation)
dimensionless constants for maximum bending stress (uniform
pressure)

short-term modulus of elasticity of lining material
enhancement factor for allowable grouting pressure
critical axial force in circular lining

dimensionless constanis for maximum deflection (uniform
pressure)

unit (specific) weight of grout mix

glass-reinforced cement

glass-reinforced plastic

excess head of grout (measured form crown of lining)
corresponding to uniform pressure load

height of lining

(Gw/E, Jiwlt)

membrane stress al any point in lining

critical buckling stress due 1o membrane action

total membrane stress

D, + F.(Hiw)

D, + F,(Hilw)

D, + FiplGw — hiw)

D, + FplGw — hiw)

allowable grouting pressure measured at invert of lining
(SJGwithw)?

reduction factor for minimum permissible lining thickness
(36070 — 1

allowable short-term bending stress of lining material
stiffness of lining, (/I2)EA1 — v))1iw)!

total bending stress of lining material due to combined
flotation and external pressure

thickness of lining

Water Research Centre

width of lining

dimensionless constants for maximum membrane stress
(flotation )

dimensionless constants for maximum membrane stress
(uniform pressure)

deflection of lining

total deflection of lining material due to combined Hotation
and external pressure

angle between supports of arch

Poisson’s ratio
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1. Introduction

The large capital expenditure and well-known disruptions to traffic during the
replacement of existing old sewers has drawn the engineers out of the traditional
methods and led them 1o seek a better and easier solution — the lining of existing
sewers, In the past, structural behaviour of circular-, egg- and inverted egg-shaped
sewer linings under different installation and operational conditions have been inves-
tigated [1-6]. The present study concentrates on the behaviour of horseshoe-shaped
sewer linings,

The linings are usually made of glass-reinforced plastic (GRP) or glass-reinforced
cement (GRC). Steel linings are also used. Obviously, a horseshoe-shaped lining
(see Fig. 1) is to be inserted into the similarly shaped sewer afier allowing for an
annulus gap so that the sewer lining fits within the existing sewer with a roughly
uniform gap between the lining and the sewer walls. The gap between the lining
and the sewer is then filled with a cementitious grout which, when sel, creates a
composite sewer-lining structure,

During installation, the lining is subjected to grout pressure. In some cases, this
may lead 1o overstressing of the lining at different sections due to excessive bending
moment, which may cause total collapse of the linings. Again, excessive deformation
of any part of the lining might occur, affecting the serviceability of the relined sewer.
Failure may also take place in the form of buckling due to excessive compressive
forces. Thus, a properly designed sewer must comply to (bending) stress-limit,
deflection-limit and buckling criteria. Here, the stress-limil criteria is so defined that
the maximum bending stress developed during grouting must not exceed the allow-
able bending stress of the lining material. For deflection-limit criteria, a maximum
allowable deflection in the lining not exceeding 3% of the width of the lining (as
advocated by the Water Research Centre in its Sewerage Rehabilitation Manual |7])
has been followed. As regards buckling criteria, the lining must be so designed that
failure is not triggered by buckling due to large hoop compression.

2. Grouting methods

During the installation of sewer linings, staged or partial grouting and full grouting
techniques ure generally adopted. Staged or partial grouting is performed in two
stages. The first stage involves grouting the annulus up to the springings, and this
15 followed by a second stage carried out after the grout of stage one has set. On
the other hand, full grouting is performed in a single stage. This technigue is more
practical than staged grouting. However, during full grouting, the lining is subjected
to higher pressure so that a thicker lining or additional supports may be deemed
essential in an effort to avoid excessive deformation or overstressing,
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Fig. |, Huorseshie-shaped lining: (a) shape of the lining sdopted in the analysis and (b the lining within
the sewer.

A Restraint conditions

The performance of egg-shaped, inverted egg-shaped and horseshoe-shaped linings
15 particularly sensitive to the type of support provided during grouting. Keeping
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this in mind, in the present study structural analyses of horseshoe-shaped linings
have been carried oul for three different support systems that miy be used during
installation. The support systems consist of hardwood wedges packed at differem
locations around the cross-section of the lining on the outside, logether with internal
struts positioned at the same locations, It is assumed that the packing between the
sewer and the lining is closely spaced (typically, with spacing not exceeding the
width of the lining), so that the structure can be studied by means of a two-dimen-
sional finite-clement (FE) model. The three possible support systems considered in
the present study are shown in Fig, 2,

Boundary Condition | consists solely of a restraint at the crown (top) of the lining
us shown in Fig, 2(a). Tt is to be noted here that grout is usually injected through
the invert (bottom) of the lining. As grout moves forward and upward during its
injection, this may push the lining upwards and, thereby, reduce the annulus gap

() (b)

— e 7 7 AN 777 7.

(©)

Fig. 2. Homseshoe-shaped lining: The support systems studied, (n) boundary condition 1, (b) boundary
eondition 2, and (¢) boundary condition 3.
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between the sewer and the lining. This is why a restraint at the crown is always
expected. The second support system, shown in Fig, 2(b) as boundary condition 2,
comprises restraints at both the erown and the invert of the lining. Like the boundary
condition 1. boundary condition 2 imposes restraints on the vertical movement of
sewer linings of not only the crown but also of the invert, Consequently, this bound-
ary condition is vertically stiffer than the Tormer, Boundary Condition 3 consists of
restraints at the crown, invert and springings of the linings (Fig. 2(c)). In addition to
vertical restraints, it restricts the horizontal movement of the lining at the springings,

4. Loading configurations

Three loading configurations, namely staged-grouting pressure, flotation pressure
and uniform pressure are included throughout the analysis unless otherwise specified.
Staged-grouting pressure corresponds to pressure from grout surrounding the lining
up to the height of the springings, as shown in Fig. 3(a), and so simulates the first
phase of staged grouting. Flotution pressure involves a head of grout up to the crown,

() ()

(c)

Fig. 3. Horseshoe-shaped lining: The londing configurmtions studied; () staged grouning, (b flotation
pressure, and (¢} uniform pressure.
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as in Fig. 3(b). In this situation, the lining is just covered by grout and hence the
buoyancy force acting on the lining is the maximum that can occur, The uniform-
pressure case, shown in Fig. 3(c). corresponds to the uniform pressure which is
applied on the lining as a consequence of an excess head of grout. Clearly, flotation
pressure and uniform pressure can be superimposed in order to simulate any grout
pressure applied on the lining during full grouting.

5. Load calculation

In the case of the loading corresponding to flotation and to the first phase of staged
grouting, the applied load is defined by the lining height it and the specific weight
of grout mix G. In these two loading cases, the applied pressure at any point on the
lining can be calculated by multiplying the specific weight of the grout mix by the
distance from the top of the grouting to the point at which the pressure is calculated.
For the uniform-load case, on the other hand, the external load is defined by the
values of excess head of grout H (and its specific weight G) and is independent of
the height of the lining,

6. Mathematical formulation of the analysis

For each load configuration and boundary case, a parametric study is carried out
by varying one parameter at a time, keeping the others constant. The resulls are most
conveniently given in terms of dimensionless equations linking all the independent
parameters together. Such equations are derived on the basis of a curve-fitting exer-
cise. Hence the design curves that will be proposed after an extensive parametric
analysis of the horseshoe-shaped sewer linings can be used for all types of lining
materials and lining sizes of that specific shape.

6.1. Dimensionless equations for bending stress and deflection

The dimensionless equations corresponding 1o the bending stress § and the deflec-
tion & at any point on the lining can be written for the three load cases us follows:
l. Staged Grouting (Fig. 3{a))

SIGw = Alwit)* (1}

ow = (B + B)'"K (2)

2. Flotation (or pressure up to the level of crown) (Fig. 3(b))
SIGw = Clwit)? (3)
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8w = (D} + DY)PK (4)

3. Uniform Pressure (excess head H) (Fig. 3(c))

SIGw = E(HWw)Ywit)? (5)
dhw = (F7 + F))"(Hiw)K (6)
where K = (Gw/E, }wit)* (7

In these equations, S/Gw can be regarded as a non-dimensional siress while & is
the deflection related to the size of the lining and K is a measure of lining flexibility.
Here, A, C, E. B, B. D, D, F, and F, are all constants which depend on the
boundary set-up adopted during the grouting of the annulus and on the loading con-
figuration used in the analysis.

The total bending stress S, and the total deflection 4, at any point in a lining
subjected to a head of grout which is greater than the lining height h (i.e. full
flotation) can be divided into values of bending stress and deflection resulting from
the two loading cases of pressure up to the crown (i.e. flotation) and uniform press-
ure. This implies that, by adding Eqgs. (3) and (5), and Egs. (4) and (6), the following
dimensionless equations for the total bending stress and the total deflection, respect-
ively, can be writlen as

S/Gw = I(C + E(HIw))(win (8

Gfw = (M2 + MY)'\PK (9
where

M, = D, + F{Hw) {10a)

M, = D, + F (Hiw) (10b)

Since, as mentioned earlier, the maximum bending stress and the maximum
deflection in a lining must not exceed the respective values of S, and (.03 w. the
values of §, and &, in Egs. (8) and (9) can be replaced by S, and 0.03w, respectively.
As the point of injection of the grout is usually located at the invert of the lining,
it is convenient to replace the value of 4 in Fqgs. (8) and (9) by the equivalent
expression (p/G — h), where p is the allowable grouting pressure measured at the
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invert of the lining. As a result, Egs. (8) and (9) can be rewritten to produce the
following design equations

R =IC + ElpiGw — hiwl (1)
where,

R = (5/Gw)tiw)* (12)
and

0.03/K = (M + N7 (13)
where,

N, = D, + F.(p/iGw — hiw) (14a)

N, = D, + FiplGw — hiw) (14h)

6.2, Dimensionless equations for membrane stress

Although buckling is unlikely to be the governing criterion in horseshoe-shaped
linings, il adequate temporary restraints are provided during their installation, the
fact that axial forces in these linings are of comparable magnitudes to those in circu-
lar ones (namely, of the order of external pressure % radius, whereas in ege-shaped
linings the axial forces are only 10%-40% (depending on boundary restraints) of
such magnitude) suggests that stability considerations should not be neglected altog-
ether. In order to consider buckling — albeit approximately — in the analysis, the
simplified approach in [5] for circular linings has been followed. It has been found
that dimensionless Egs. (15) and (16) below, which had been found suitable for
circular linings [5] under flotation and uniform pressure cases, respectively, are equ-
ally applicable 1o horseshoe-shaped linings once w is inserted instead of D, Here,
M corresponds to the membrane stress al any point in the lining.

1. Flotation
MiGw = alwit) (15)

2. Uniform Pressure
MIGw = Biwlti Hiw) (16)

where o and B are constants which depend on the boundary case selected during
installation,

The total direct membrane stress (M,) at any point in a lining subjected 1o a head
of grout which is greater than the lining height k (ie. full grouting), can be oblained
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by adding the values of membrane stresses resulting from each of the Aotation load-
ing and the uniform pressure. This leads to the following dimensionless equation for
the total membrane stress in the lining:

(MJGw)(tiw) = (a + BlHW)) (17

In Eg. (17), the replacing of the value of H by the equivalent expression (p/G —
h) und of hiw by 0.8, produces the following generic design equation for the different
boundary conditions:

(MJGwi(tiw) = a + Bip/Gw - (L.8) (18)

Here, the value of the critical grouting pressure, that can be applied on the lining
during its installation, is based on a direct stress-limit criteria which is equal to the
critical buckling stress due to membrane action M., in a hinged arch of equivalent
radius and unrestrained length [8]. The value of M., is given by the following equ-
ation:

(M_JGw)tlw) = 4.0(5/Gw) (149)
where Sg is the stiffoess of the lining which is given as follows:
S = (M2 EX] — v))tiw)? (20)

¢ in Eq. (19) is a constant which depends on the angle # between the hinges of the
arch and is expressed as follows:

0 = (360°6) - | (21)

s0 that Q takes on the values 3 und 15 for boundary cases 2 and 3, respectively.

By equating expressions 18 and 19 and using the appropriaste value of Q from Eg,
(21), a general design equation for the critical buckling pressure can be derived,
albeit approximately, as follows:

HNSH/CGwW) = a + Blp/Gw — 0.8) (22)

The approximation implicit in this simplified buckling criterion is the adoption of
hinges at the restrained points (thus neglecting continuity) [5] and in approximating
the effective arc by an equivalent circular one,

6.3. Design eriteria

For uny particular lining geometry and material properties, the above equations
must be satisfied at the locations of maximum bending stress, deflection and axial
stress in the lining. The maximum allowable grouting pressure p which can be
applied on the lining during grouting is the minimum of the p values as determined
by all the criteria described in the previous two sections.



EM. Sevay @t ol 7 Thin- Walled Striactures 33§ 1O00) Po_gx L]
7. Two-dimensional finite-element model

A linear two-dimensional FE model is used in order to simulate the behaviour of
horseshoe-shaped linings under various probable loads during installation, It can be
seen from the shape of the horseshoe-shaped sewer of Fig, | that its bottom corners
have sharp bends. Since higher concentrated stresses are expected at, or close to,
these sharp bends, these stress concentrations may be catered for by using a thicker
liner at the comers or by smoothening the comers by emploving circular arcs. In
the present study, the comers of the sewer lining have been given a slightly different
geometry than that of the actual sewer. While the shape of the lining adopted for
the analysis has been shown in Fig. 1(a), the actual lining geometry, in conjunction
with the horseshoe-shaped sewer, is given in Fig. 1(b). It is clear that the height of
the lining h is 0.8 times its width (i.e. iw = (.8); also, the annulus gap between the
sewer and the lining becomes non-uniform, with a slightly higher gap, near the bends.

In the analysis, the thickness of the lining is assumed to be constant all around
the cross-section. Due to symmetry of the lining geometry, loading and boundary
conditions about the vertical axis (i.e. Y-axis), only half of the ¢ross-section, shown
in Fig. 4, 1s analysed. The elements used in the analysis are two-noded beam elements
each having three degrees of freedom (horizontal and vertical displacement, and
rotation) at each node. The mesh adopted consists of 30 elements, the node numbers
corresponding to crown, springing and invert being 31, 14 and 1, respectively,

The restraints due to the support system shown in Fig. 2 are simulated numerically
in the analysis by fixing the horizontal and vertical components of displacement
at the corresponding nodal points. This involves @ small approximation in that the
deformation in the restraining struts is ignored, the strut being very stiff compared
with the lining. As half of the cross-section is analysed, the horizontal and rotational
components of displacements at nodes 1 and 31 of the lining are fully restrained. In
addition, in Fig. 4, the vertical displacement at node 31 is set 10 zero for boundary
case | while the vertical displacements at nodes 1 and 31 are made equal to zero
for boundary case 2. Similarly, restraints have been imposed on the vertical displace-
ment at node 1 and 31, and on vertical and horizontal displacements at node 14
(springing) in order to simulate boundary case 3.

The various loading configurations shown in Fig. 3 have been simulated by apply-
ing equivalent point loads at appropriate nodes.

8. Computation of constants

As already explained, for each load and boundary case, the parametric analysis is
carried out by varying one parameter at a time, keeping the others unchanged. The
results (bending stresses, deflections and axial stresses) are given in terms of dimen-
sionless equations linking all the independent parameters together as described earl-
ier. The non-dimensional bending stress (S/Gw) and deflection (&%) are plotied
against (w/r) and lining flexibility K, respectively for staged grouting and flotation
load, and against (HAv)w/)" and (H/Aw)K for uniform pressure. Similarly, the non-
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Fig. 4. Horseshoe-shaped lining: Two-dimensional FE mesh adopled in the analysis.

dimensional membrane stress (M/Gw) is plotied against (w/r) and (w/)(Hiw), respect-
ively for flotation and uniform pressure cases. From these plots, constants for the
maximum bending stress, maximum deflection and maximum membrane stress in
the lining are computed for different boundary cases and different loading configur-
ations, These are listed in Tables 1-3, respectively,

9. Full-grouting design curves

9.1, Stress-limit criteria

9.1.1. Boundary condition 1: restrained at crown against Sesearion

The values of the bending-stress constants A, €, and £ for this boundary case for
different loading conditions are shown in Table 1. It is seen from these values that
the absolute magnitude of € (flotation-load case) at node 31 (at the crown) is the



EM. Sevef et al # Thin-Walled Structures 33 | 1999) o948 i

Table |
Dimensionless constants for the maximom bending stress in the lining

Constant Boundary Case 1 Boundury Cose 2 Boundary Cuse 3
Staged grouting A (L1956 Node 31 = 00674 Node | 00204 Node |
Flotation C 04432 Node 31  — 0.1381 Node 1 = 0.0535 Node |
0.2477 Node | (1063 Node 31
Uniform pressore E 01961 Mode | = L1027 Node - 0611 Node |
il
(LOTEY Node 31 = 00071 Node |

(Note: positive values of A, C and E imply tensile stresses in the inner surfaces of the lining)

Table 2
Dimensionless constants for the maximum deflection in the liming
Coefficient Boundary case | Boundary case 2 Boundary case 3
Staged grouting B, 000000 Node | — 000120 Node  0,00003 Node 5
19
By 03610 Node 1 0OD213 Node  0,.00242 Node 5
19
Flowation o, 000000 Node | 0.00218 Node 20 0.00008 Node S
Dy 007722 Node | 000466 Node 20 (.00065 Node 5
Uniform pressure F, 000000 Node | 0.00230 Node 20 0.00008 Node 5
Fy D.04071 Node | 0.DMES Node 20 000072 Node §

(Nate: Tnward deflections are taken us positive)

Table 3
Dimensionless constants for the maximum direet membrane siress in the lining

Constant Boundary case 2 Boundary case 3
Flotation o 0,19 node 21 (.27 Node 10
0,16 node 10 0.0 Node 24
Uniform pressure B 0.37 node 21 0,38 Node 10
042 node 10 0.51 Node 24

greatest of all the five values tabulated in the column. This means that a minimum
value of R equal to 0.4482 is needed in order for the lining 1o withstand the maximum
bending stress at the crown resulting from the flotation load alone.

It can be seen from the table that, whereas in case of the fotation load the
maximum bending stress occurred at node 31, that for uniform pressure is located
at node 1. This suggests that, for the case of full grouting (flotation plus uniform
pressure), Eq. (11) must be satisfied at both nodes 31 and | of the lining. This is
why the values of C and E are computed at nodes 1 and 31, thus ensuring that the
worst case for the full-grouting load can be designed for, In this connection, it should
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be stated that the combined bending stresses at all other nodes were also computed

and were found to be less critical than those at nodes 1 and 31, The above discussion

leads to the following design equations which are shown graphically in Fig. 5(a).
At node 31,

14.4 |- Node 31 (Crown)

128 [

TTTT ITTTYY

08, 1 . 2 3 4

14.4

128 -

VI Y AT e g Y Y

(S4/GW) (tW)*
®)

Fig. 5. Homeshoe-shaped lining: Maximum bending stresses ot the crown and the invent for flotation
and additional external pressure under (a) boundary condition | and (b) boundary condition 2.
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R = 104482 + 0.0783(p/Gw — 0.8)I (23)
= 10.3856 + 0.0783p/Gw!
Al node 1,
R =10.2477 + 0.1961(p/Gw — 0.8)| (24)

= 10.0908 + 0.1961 p/Gwl

It emerges from Fig. S(a) that the allowable grouting pressure resulting from Eq.
(23) remained critical with the value of R between 0.4482 and (0.5820; once its value
exceeds 0.5820, Eq. (24) becomes dominant since the bending stress at node | then
becomes critical.

Staged grouting is not critical in comparison to full grouting, If needed, the rel-
evant permissible grouting pressures associated with this technique can be obtained
by means of Table | and Eq. (1),

W.1.2. Boundary condition 2: restrained ar crown and invert of the lining

For this boundary case, the relevant bending-stress constants for the different load-
ing configurations are given in Table 1, Tt is seen from the table that the maximum
bending-stress resulting from the flotation load is located at the invert of the lining
(Le. at node 1), whereas in the case of the uniform-pressure load, the maximum
bending-stress location is at the crown (i.e. at node 31) of the lining. This implies
that Eq. (11) is to be satisfied at both these nodal points. The combined bending
stresses at the other nodes were caleulated and proved to be less critical than those
at nodes 1 and 31. This leads to the following two design expressions:

AL node 1,

R =1—0.1381 — 0.007L(p/Gw — .8) (25)
= | = 0.1324 — 0.0071p/Gwl
At node 31,
R =10.1063 — 0.1027(pGw — 0.8)| (26)

= 10.1885 — 0.1027p/Gwl

These two equations are shown pictorially in Fig. 5(b). It emerges from Fig. 5(b)
and Table 1 that a minimum value of R equal to 0.1381 is required to tuke care of
the maximum bending stress developed in horseshoe-shaped lining during the appli-
cation of the fotation loading,

It is seen from the figure that, within the runge of R values 0.1381 and 0.1563,
the stress at node |, i.e. the invert, is critical. However, beyond the value of R
equal to 0.1563, the maximum bending stress occurs at node 31, i.e. at the crown
of the lining,

As for the boundary condition 1, partial grouting is less critical than the other two
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types of loadings in the present boundary case 2. If staged grouting is employed
during the installation of the sewer lining, the allowable grouting pressure can readily
be determined in a manner similar to boundary condition 1.

9.1.3. Boundary condition 3: restrained at crown, invert and springing of the
lining

In this boundary case, the maximum bending stress is located at the invert of the
lining for both loading cases. Hence, at node 1, the following design expression can
be written through the use of Eq. (1)

R =1 = 0.0535 = 0.0611(p/Gw = 0.8)I (27}
= | = 00046 = 0.06]11p/Gwl

with p/Gw = 0.8, because as for the boundary cases | and 2, a full head of grout
must be imposed on the lining for the critical condition 1o be realised. Once again,
if partial grouting conditions are required, they can be found by means of Eq. (1)
and Table 1.

O.1.4. Summary of stress-limit criteria

All the findings and conclusions described earlier for the three boundary cases
studied in the context of full grouting are summarised in Fig. 6. From this figure,
the allowable grouting pressure on a particular lining for any boundary case, based
on the stress-limit crileria, can be obtained, if the geometrical and material parameters
of the lining are known,

It is seen from Fig. 6 that, for a given value of R, boundary condition 2 gives
allowable grouting pressures higher than those of boundary condition 1. Similarly,
boundary case 3 provides higher allowable pressures than the other two boundary
conditions (except for a small range of R in which boundary condition 2 gives the
greater value of allowable grouting pressure). Hence, as expected, increasing
restraints permit higher grouting pressure (o be applied.

9.2, Deflection-limit criteria

9.2.1. Boundarv condition 1: restrained at crown only

For this boundary case, Table 2 shows that the maximum deflection in the lining,
resulting from each of the flotation and uniform-pressure loading cases, is located
at the invert of the lining (at node 1). This means that Eq. (13) must be satisfied at
node | of the lining, leading to the following design equation:

0.03/K = 10.04071p/Gw + 0.04465] (28)

where p/Gw > 0.8 holds, because in this boundary case flotation rather than partial
grouting is critical. Tf needed, the latter case can be calculated using Table 2 and

Eq. (2).



SM. Seraf e al £ Thin-Walled Strictures 33 (1000} 0 48 15

16
15.2

|i|1
i-uh

14.4

138

—

h-_-
| -.-'--

L
128
12

1z

104
[

" y/ARRNIIN,
: / ,

18
L L !
1
0.8 | !
005 01 0.2 05 1 ? 5 10

(S /GW) (t/w)°

Fig. 6. Horseshoe-shaped lining: Allowable grouting pressure, boased on stress-limit criteria, for various
boundary conditions.

8.2.2. Boundary condition 2: restrained at crown and invert

From Table 2, it is seen that the maximum deflection for staged grouting, flotation
and uniform-pressure loading occurs at nodes 19, 20 and 20, respectively. Hence,
for full grouting (flotation plus uniform pressure), the maximum deflection will occur
at node 20, By using Eq. (13), the following design equation can be deduced at this
node of maximum displacement

0.03/K = 10.00537p/Gw — 0,009441 (29)

for p/G = h. Here, partial grouting is not critical in comparison to flotation or
full grouting.
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9.2.3. Roundary condition 3: restrained at crown, invert and springing of the
fining

In this boundary case, it is interesting to note from Table 2 that the maximum
deflection in the lining resulting from staged grouting is greater than the one resulting
from the flotation loud alone. This leads to the requirement that a minimum value
of 0.03/K equal to 0.00242( = VD.00003* + 0.00242%) is needed in order for the
lining to withstand the maximum deflection of 3% of w. Beyond this value, the full
combination of flotation and uniform-pressure case becomes critical,

The maximum deflection in the lining resulting from the combined effect of flo-
tation and uniform-pressure loads is located at node 5 of the lining (as is also the
case when partial grouting governs), leading to the following design equation for
piG = I

0.03/K = 17.212 % 107°p/Gw + 8.144 X 1077 (30

6,24, Summary of the deflection-limit criferia

Fig. 7 summarises the results of the above three boundary conditions. This can
now be used to determine the allowable grouting pressure for a particular lining
subjected to full grouting load under the boundary conditions presently considered.
It is noted from the figure that unlike the cut-off for the curve of boundary conditions
2 and 3 at an abscissa value of 0.00514 and 0.00242, respectively, the curve for
boundary condition | reaches the horizontal axis.

Although, in the present study, the permissible deflection has been taken as 3%
of the width of the sewer lining, the proposed design curves can be adopted without
any modification for any other allowable deflection-limit eriteriu set by the competent
authority. (Only the abscissa’s label in Fig. 7 changes by replacing the factor 0.03
by n/100 where n is the permissible deflection as percentage of the width.)

0.3, Buckling criteria

9.3.1. Boundary condition 2: restrained at crown and invert

The dimensionless constants « and @ for the maximum direct membrane
stresses in the lining are listed in Table 3. For boundary condition 2, the maximum
membrane stress develops at node 21 in the case of the flotation load, whereas
under uniform-pressure load the maximum stress occurs at node 10. Thus, Ey.
{22) must be satisfied at both nodes 10 and 21. This leads to the following two
design expressions:

At node 10,

40(S/Gw) = 0.16 + 0.42(p/Gw — 0.8) (31)
= 0.42p/Gw — 0.176
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Fig. 7. Horseshoc-shaped lining: Allowable grouting pressure based on deflection-limit criterin, for var-
s boundary conditlons,

Al node 21,
HASHGw) = 019 + 037(piGw — 0.8) {32)
= 0.37plGw = 0.106

Egs. (31) and (32) are shown pictorially in Fig. 8(a). From this figure it is clear
that, up 10 a value of p/Gw equal to 1.4 (ie. N 5/Gw) equal to 0.412), Eq. (32)
is valid while, beyond this point, Eq. (31) dictates the allowable grouting pressure,
(Clearly, the combined membrine siresses at all other nodes were computed and
were found to be less critical than those at nodes 10 and 21.)
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Fig. 8. Horseshoe-shaped lining: Maximum membrane sirosses al nodes 10 and 21 for flotation and
additional external pressure under (a) boundary condition 2 and (b) boundary condition 3,

9.3.2. Boundary condition 3: restrained at crown, invert and springing of the

lining

From Table 3, it can be seen that, under boundary condition 3, the maximum
membrane stress develops at node 10 for the flotation load whereas, under uniform-
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pressure load, the maximum stress is located at node 24. Thus, Eq. (22) must be
satisfied at both nodes 10 and 24, This leads to the following two design expressions:
Al node 10,

HASHGw) = 0.27 + 0.38(p/Gw — 0.8) (33)
= 038p/Gw — 0.034
Al node 24,
NS /Gw) = 0.10 + 0.51(p/Gw — 0.8) (34)

= 0.51p/Gw — 0.308

In order to visualise the effect of full-grouting load (i.e. combined flotation and
uniform-pressure load), Egs. (33) and (34) are plotted in Fig. 8(b). Evidently, Ey.
(33) provides the design criterion up to a value of MGw equal to 2.11 (i.e. 40(5,/Gw)
equal to 0.768). After this value, it is Eq. (34) which constitutes the design
expression. (As for the previous boundary case, the combined membrane stresses at
all other nodes were computed, being found to be less critical than those at nodes
10 and 24.)

9.3.3. Summary of the buckling criteria

Fig. % summuarises the results of the above two boundary conditions, It should be
mentioned here that boundary condition 1 — admittedly, the most critical buckling
case of all — has not been considered in the buckling analysis since a lining under
this support case cannot be idealised to a two-hinged arch of equivalent radius and
unrestrained length, the critical buckling stress [8] of which has been adopted as the
basis for the approximaie stability analysis in the present study. Moreover, it is
expected that, during the installation of linings within horseshoe-shaped sewers,
boundary conditions 2 or 3 are 1o be adopted in order to enable higher grouting
pressures to be applied.

It is to be noted that the assumption of an equivalent hinged arch is conservative
and can be considered as a lower-bound solution since the structural behaviour of
that portion of the lining which initiates buckling (and hence is taken as the “critical”
portion) is between a hinged and a fixed arch [5). Also, the applicability of the
buckling criterion as set in [8] requires an uniform pressure intensity on the arch;
such a condition may very nearly be fulfilled under excess head of grout,

10. Role of additional restraints during installation
0.1, Enhancement factor
Both the maximum bending stress and the maximum deflection in a lining that

arise from grouting pressure can be reduced by introducing additional restraints due-
ing installation. Similarly, additional restraints also result in an increase in resistance
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Fig. 9. Hewseshoe-shaped lining: Allowable grouting pressure, based on buckling criterin, for various
boundary conditions.

against buckling of the lining. This implies that an enhancement in the value of the
grouting pressure can be achieved, thus ensuring adequate grouting of the annulus,
This gives rise to the introduction of what can be termed an enhancement factor
(EF). Here, for stress-limit and deflection-limit criteria, the enhancement factor is
defined as the ratio of the allowable grouting pressure which could be applied on
any particular lining using boundary case 2 or 3 to the one corresponding to boundary
case 1, 1.e.

EF; = pip (35)
Here i corresponds 1o boundary cases 2 or 3. Since, in the present study, only bound-
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ary cases 2 and 3 have been considered in the buckling analysis, the corresponding
enhancement factor for this third criterion is given by pJp,.

Values of EF are determined for each of the stress limit, deflection-limit and buck-
ling criteria. It has been observed that the EFs for deflection-limit criteria are much
higher than their stress-limit and buckling counterparts, and, thus, will not govern
the design.

10.1.1. Stress-limit criteria
The expression used to calculate the enhancement factor for stress-limit criteria
cun be derived from Eqgs. (23)-(27) and they are given below:

_ R - 0.3856
P = 0783

for 04482 = R = 0.5820,

_ R~ 0098
01961

for R = (,5820,

R -=0.1324 _
Py = 0.0071 Gw (37a)

for 0.1381 = R = 00,1563

R+ OLI8BRS _
01027 O (370)

tor B = 0.1563, and

_ R - 00046 _ ”
Py= T ooeir =" (38)

lor R = (0.8

Gw i 36a)

Cow {36b)

From the above equations, enhancement factors can be calculated for boundary
conditions 2 and 3; these are plotted in Fig. 10(a). From the figure, it can be deduced
that the highest possible enhancement factors that can be achieved for houndary
conditions 2 and 3 are 7.75 and 9.075, respectively. As the value of R increases
gradually from 0.4482 1o 0.5820, the value of enhancement factor sharply decreases
from 7.75 to 2.99 for boundary case 2 and from 9.075 1o 3.770 for boundary cuse
3. Beyond this range of R, the EF gradually decreases. attaining virtually constant
values for both boundary conditions.

10.1.2. Buckling criteria

Using Eqs. (31)-(34), the enhancement factor for the buckling eriterion due to the
adoption of boundary condition 3 instead of boundary condition 2 during installation,
is found 10 be as follows:
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0,725(608,/Gw + 0.308)
128,/Gw + 0.106

for 0.0158 = 5/Gw = 0.0343

EF, = pylp, = {39a)
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_ 0.824(605,/Gw + 0.308)
T 128,JGw + 0.176

for Sa/Gw = 0.0343

(39h)

The enhancement factors corresponding to the buckling criterion are plotted in
Fig. 10(b).

10.2. Reduction factors

Once a value of allowable grouting pressure is determined for any particular lining
using a certain restraint set-up, a considerable reduction in the allowable thickness
of the lining can usually be achieved if additional restraints are used instead. This
gives rise to the introduction of another factor, called the reduction factor (RF),
which is defined below,

10.2.1, Stress-limit criteria

For this criteria, the reduction factor is defined as the ratio of the lining thickness
resulting from the use of boundary case 2 or 3 to the one corresponding to boundary
case 1. The equation used to calculate the values of RF is as follows:

RF, = 1/, (<)
where

= |C; + (pGw = 0.B)E)' P GwYS,)'? {(40b)
and

h = [Cy + (plGw — 0.8)E, )" Gw'/S, |7 {40c)

with i corresponding to boundary cases 2 or 3, and other variubles being defined by
Eqgs. (23)-(27) and Table 1.

The final equations that have been used to calculate the RFs shown in Fig. 11{a)
are as follows (unlike egg-shaped or inverted egg-shaped linings, horseshoe-shaped
linings always show a reduction in thickness (i.e. RF < 1) as additional restraints
are introduced):

i
) (41a)

S U 0.1324 + 0.0071p/Gw
i 0.3856 + 0.0783p/Gw

for 0.8 = plGw = 2.5,

B ( 0.1324 + 0.007 1p/Gw
0.0908 + 0.1961p/Gw

12
) (41b)

for 2.5 = p/Gw = 3.357,

_ (l 0.1885 — 0.1027p/Gw ‘)”*

1 0.0908 + 0.1961p/Gw (4lc)
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Fig. 11. Horseshoe-shaped lining: Reduction factors for minimum permissible lining thickness based on
(@) stress-limit eriteria and (b) buckling crilenia.

for piGw = 3.357, and,

RF: = ( 0.0046 + 0.061 IplGw
s 0.3856 + 0.0783p/Gw

W12
) (42a)
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for 0.8 = p/Gw = 2.5,

. U 0.0046 + 0.061 1p/Gw
A 0.0908 + 0.1961p/Gw

12
] (42h)

for p/Gw = 2.5

Fig. 11(a) shows that except, for a small range of p/Gw, boundary condition 3
always provides reduction factors less than that of boundary condition 2. With the
increase of p/Gw, the reduction factors attain virtually constant values for both the
boundary cases,

10.2.2. Buckling criteria

In the present study, the reduction factors corresponding to buckling criteria are
given by the ratio 1/, since, as for the enhancement factors considered earlier, only
boundary cases 2 and 3 are considered. Using Egs. (31)-(34), the RF is found as fol-
lows:

Ay = ot = (| S = el
for 0.8 = p/Gw = 1.4
-
o [P 0
for 1.4 = piGw = 2,11
0.51p/Gw — 0.308 [\'?
= U S(0.42p/Gw — 0.176) ” 12

for p/Gw = 2.11

The reduction factors based on the buckling criterion are shown in Fig, 11(h). As
lor the case of the corresponding enhancement factors, the RFs for boundary cases
2 and 3 were also determined on the basis of deflection-limit criteria. Again, stress
and buckling limitations proved to be more critical for the determination of RFs,
and, hence reduction factors under deflection-limit criteria are not reported here.

11. Conclusions

The proposed design curves can be used to determine the allowable grouting press-
ure during the installation of horseshoe-shaped sewer linings under various restraint
sel-ups and loading conditions. Altlematively, for a given boundary condition and
known grouting pressure, the necessary lining thickness can be determined for any
lining material using the currently proposed design curves and equations.
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It has been shown that, by introducing additional temporary restraints before grout-
ing around the horseshoe-shaped sewer lining, usually considerably higher grouting
pressures, leading to a more reliable grouting operation, can be attained. In the study,
it has been assumed that all restraints are fully effective, so that the restrained points
of the lining are prevented from moving in any direction. Such ideal conditions
will very nearly be realised if internal supports coupled with external packing are
effectively provided.

In the case of the approximate buckling analysis, introduction of additional
restraints reduced the effective length of the arch between the restraints, thus leading
1o a stiffer structure with higher critical buckling pressure. The presently considered
buckling criterion assumes an uniform pressure inlensity on the arch; the problem
solved in the appendix clearly shows that such a criterion may easily be achieved
il linings of adequate thickness and acceptable physical properties are employed in
design; this is equivalent to the introduction of a minimum p/Gw value of, say, 3
4 (i.e. honzontal cut-offs at these values of the ordinate in Fig. 9), which implies
that the head of grout is several times the size of the lining cross-section and thus
means that the membrane stress state is nearly uniform,

Appendix
Design example for a typical horseshoe-shaped lining

The following design example demonstrates the use of the structural design
method outlined in the present paper. The use of a particular lining material is
merely illustrative.

An existing sewer is horseshoe-shaped. Its different parameters are as follows:

. Geometrical parameters
Overall height of the sewer = 1270 mm
Overall width of the sewer = 1570 mm
The minimum annulus grouting thickness to be provided = 23 mm, and the lining
thickness = 12 mm

[ %)

Materiul properties

The value of the short-term Young's modulus (£,) of the GRP lining material
is equal to 20 ¥ 10" kN/m* The value of allowable short-term bending stress
(8,) of the GRP lining equals 60.0 % 10" kNfm’

The specific weight (G) of the grout mix equals 16.0 kN/m’

Using both boundary cases 2 and 3 as the possible temporary support systems, the
allowable grouting pressure is o be determined.
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Solution

From the values of the geometrical parameters, the internal dimensions of the
lining (i and w) are calculated as;

h=1270 — (23 X 2 + 12 %X 2) = 1200 mm
w= 1570 - (23 X 2 + 12 X 2) = 1500 mm

Using the values of the material properties, the non-dimensional strength of the lining
R, permissible deflection 0.03/K and non-dimensional stiffness of the lining S/Gw
are calculated, enabling checks on the three criteria to proceed; these are as follows

for boundary case 2:

I. (Bending) stress-limit criteria: Using the values of material properties, the non-
dimensional strength & of the lining is caleulated.

S \(1\* _ 60 x10° foo12\
i (dw)(w) T 160 X |.5( 1.5 ) =16

Using the value of R equal to 0.16 and Fig. 6 (or Eq. (26)), p/Gw = 3.4
2. Deflection-limit criteria;

0.03 E N\ 1)} 20 ¥ 10° (u.mz
= .03 = | =003 —= it = 0,
K s (Gn'_)[w] ”m( 16.0 x 1.5) 1.5 ) RIeE

Using the value of 0.04/K equal to 0.0128 and Fig. 7 (or Eq. (29)), p/Gw = 4.14
3. Buckling criteria:

L E, feV 1 (20 x 100 12
o (I) T2 (]_-II.E,PJ(ISUU) =
.5 0.901
1 - . = ) 4
From this, Gwﬂlﬂ 16 % 1.5 4x3=045

Using this value and Fig. 9 (or Eq. (31)), p/Gw = 1.49

Hence, the minimum of these three values, ic. p/Gw = 149 (corresponding to
the buckling criterion), is 10 be adopted as the basis for the design,

Here, p/Gw = 149, or p = 149 X 16.0 X 1.5 = 35.77 kN/m® which is equal
to 2.24 m head of grout from the invert or 1.04 m head of grout from the crown of
the lining.

When the above exercise is repeated for boundary case 3, the values of pGw
under stress-limit criteria, deflection-limit criteria and buckling criteria become 2,54,
17.64 and 5,02, respectively. Thus, under boundary condition 3, the value of piGw
equal to 2.54 (corresponding to the (bending) stress-limit criterion) governs with
allowable grouting pressure equal to 60.96 kN/m”.
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